PV Grid integration and the need for Demand Side Management (DSM)

Mr. Nikolas Philippou
FOSS / UCY
Motivation for enabling DSM

- High PV penetration may lead to stability and reliability problems

Source - EPRI: The integrated grid
Demand Side Management (DSM)

- Two main programs
 - Demand response programs/load shifting
 - Conservation and energy efficiency

- Outcomes:
 - Reduction on the customers’ electricity bill
 - Decrease the operation and maintenance costs
 - Decrease carbon footprint and making the whole network more reliable and secure

- Objective:
 - Flatten the electricity profile demand
 - Direct use of available energy from RES

Energy to grid/ESS/PHEV
Demand Side Management (DSM)

- Two main programs
 - Demand response programs/load shifting
 - Conservation and energy efficiency

- Outcomes:
 - Reduction on the customers’ electricity bill
 - Decrease the operation and maintenance costs
 - Decrease carbon footprint and making the whole network more reliable and secure

- Objective:
 - Flatten the electricity profile demand
 - Direct use of available energy from RES
Pilot site – enabling Demand Response

- 300 prosumers participate
- Price-based DSM
 - Time-Of-Use pricing (TOU)
- Information send to end users:
 - In-House Displays (IHD)
 - Web application
 - Electricity bill

Smart Meters

- Able to enable price-based DSM (tariff registers)
- Data-sets acquired PV production and household consumption profiles
- Monitoring through IHDs and web applications
DSM: Dynamic tariff tool

ToU blocks
- Two step method:
 - Statistical step
 - Optimization step

ToU tariffs
- Optimization
- Neutral cost effect
Results – Correlation rates

- The participants' load profile was correlated with the average consumption profile as provided by the EAC.

<table>
<thead>
<tr>
<th>Period</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
<td>96.41%</td>
</tr>
<tr>
<td>Middle</td>
<td>96.28%</td>
</tr>
<tr>
<td>Winter</td>
<td>92.56%</td>
</tr>
</tbody>
</table>
Results – seasonal profiles and ToU

- Seasonal average profiles from the SmartPV sample and the corresponding charge based on the ToU tariffs

ToU tariffs provisionally approved by CERA

<table>
<thead>
<tr>
<th>Blocks</th>
<th>Price (€cents/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>18,85</td>
</tr>
<tr>
<td>Shoulder</td>
<td>14,85</td>
</tr>
<tr>
<td>Off-peak</td>
<td>10,85</td>
</tr>
</tbody>
</table>

Winter
Conclusions

- Need DSM for higher PV penetration
- Develop ToU tariffs in an attempt to reduce consumption peaks
- Examine how energy behaviour alters under different forms of monitoring - information send to end users via:
 - IHDs
 - Web access
 - Bi-monthly mail bill
- Strong correlation rates between the selected sample and the domestic consumers ⇒ any behaviour change due to the application of the ToU tariffs can be extrapolated to a larger scale
- Derive new policies/schemes
Grid Integration of PVs and the need for forecasting

Mr. Ioannis Koumparou
FOSS / UCY
Motivation: PV Capacity in Cyprus

- Installed capacity of PV systems increasing rapidly
- Towards the 2020 goals

By 3/2016:
- 1900 FiT PV systems
- 8300 Net metering Systems

PVs are distributed throughout the island in various sizes

Great need to accurately forecast the PV energy production in advance
Characterisation & Classification of Daily Sky Conditions

Probability of Persistence, POP$_{day}$ (%)

Clearance Index, K$_{day}$ (%)

<table>
<thead>
<tr>
<th>Classes (% occurrence)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>45.75</td>
<td>1.1</td>
<td>1.64</td>
<td>30.41</td>
<td>11.78</td>
<td>1.64</td>
<td>2.74</td>
<td>4.93</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>47.81</td>
<td>2.19</td>
<td>0.55</td>
<td>22.68</td>
<td>14.48</td>
<td>2.19</td>
<td>3.83</td>
<td>4.92</td>
<td>0</td>
</tr>
<tr>
<td>2013</td>
<td>49.04</td>
<td>6.3</td>
<td>1.37</td>
<td>15.62</td>
<td>21.64</td>
<td>0.82</td>
<td>0.55</td>
<td>4.66</td>
<td>0</td>
</tr>
<tr>
<td>2014</td>
<td>47.12</td>
<td>1.64</td>
<td>1.64</td>
<td>30.68</td>
<td>13.42</td>
<td>0.82</td>
<td>2.19</td>
<td>2.47</td>
<td>0</td>
</tr>
<tr>
<td>2015</td>
<td>51.78</td>
<td>2.47</td>
<td>1.92</td>
<td>23.84</td>
<td>10.96</td>
<td>3.01</td>
<td>1.64</td>
<td>4.38</td>
<td>0</td>
</tr>
<tr>
<td>Average %</td>
<td>48.3</td>
<td>2.74</td>
<td>1.42</td>
<td>24.65</td>
<td>14.46</td>
<td>1.7</td>
<td>2.19</td>
<td>4.27</td>
<td>0</td>
</tr>
<tr>
<td>Average Days</td>
<td>176</td>
<td>10</td>
<td>5</td>
<td>90</td>
<td>54</td>
<td>6</td>
<td>8</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

87.41 %

320 days
Forecasting Tool: Development Phases

- Forecasting PV production
- Nowcasting PV production
- Real time PV production

- NWP
- Weather Data
- Smart Meter Data
- PV Capacity update
- Real PV production – Distribution SS

- Central DB

- Historical Timeseries data
- “Long term” prediction – Current day data
- Real time data

- Physical / Statistical approaches
- Statistical approaches
- Statistical approaches

- Day-ahead PV forecast
- Hour-ahead PV forecast
- Real time PV production

- Current phase
 - Day ahead predictions

- Deployed a network of 17 weather stations and 300 smart meters (100 for PV)
 - Used for the training of the expert system
Currently:
- Cyprus tessellated in 4 tiles
- 4 districts of Cyprus (Nicosia, Limassol, Larnaka, Paphos)
- Numerical Weather Predictions for each tile is acquired from the MSC

Assumptions
- PV systems are superpositioned
- All PV systems are polycrystalline
- Mounting is same for all systems

PV Forecasting tool is under continues development and upgrade
- Current Version (delivered to DSOC)
Forecasting tool for all PV Systems in Cyprus
- Accurate
- Easy to use by non experienced employees

Obstacles
- PV systems distributed throughout the island in various sizes, technologies and characteristics
- Limited information of the actual PV production in Cyprus is yet to be acquired
- Solar irradiance is intermittent in nature → Difficulty in predicting intra day fluctuations

Advantages
- Distributed nature of PV systems smoothen the effect of local solar fluctuations
- Infrastructure developed for monitoring the weather conditions and PV production
Grid integration of PVs and the need of storage

Mr. Michalis Florides
Research Associate

University of Cyprus
PV Technology
PVs are a clean power source
Gaining popularity
Too much peak power injected into the grid
Battery Storage - Solution

- Smooth injected peak power
- Smart energy management and power flow
- Increase self-consumption
- Network stabilisation
Battery Storage – AC & DC Systems

In an AC-system the battery is separately connected to the household AC grid via an inverter and DC converter.

In a DC-system the battery is connected between the DC converter and the actual inverter.
Battery Storage – DC System

- + Fewer Components
- + More Efficient
- + Cheaper
- - Replace String Inverter to Battery Inverter
Battery Storage – AC System

- Easily fitted to existing installations
- Better expandability
- Need String Inverter + Battery Inverter
Battery Storage – Fronius System

Courtesy of Fronius
Battery Storage – Targets

- Modelling and Simulations
- Battery Technologies for a Hybrid System
- Smart Energy Management and Power Flow Algorithms
- Profit and Payback Period Estimation
Grid integration of Electric Vehicles

Mr. Venizelos Venizelou
PhD Candidate – Research Assistant

University of Cyprus
PV Technology
1. Introduction

Why Electric Vehicles?

- Transportation takes over 20% of total CO₂ emissions
- Driving on electricity is less expensive per km compared to fossil fuel
- Reduce GHG emissions
- Storage capacity with huge management flexibility
- Balance the fluctuation of RES
- Ancillary services, voltage stability, and peak reduction
2. Challenges & Objectives

- **Challenges:**
 - Not enough grid capacity for high penetration levels
 - Fast charging may lead to overloads and disturbances
 - Potential increase in peak electrical demand
 - Very few recharge points

- **Objectives:**
 - Determine the impacts on the electric grid
 - Efficient management of EV charge
 - Combine EVs and RES
3. Charging Scenarios and Assumptions

Charging scenarios:
- Uncontrolled charging without considering the mobility curves.
- Uncontrolled charging considering mobility curves.
- Smart Charging (Off-peak periods).
- Smart Charging in a V2G configuration.

Assumptions:
- 50,000 EVs in Cyprus by 2030.
- 36 kWh Li-Ion battery.
- Recharge at a constant rate (SOC: 0 – 100%).
6. Off – peak EV charging using TOU tariffs

- Overlaps the peak hours of the original load → Stress of the electric power system
- During off-peak periods electricity rates are cheaper
- Maximise: \(LF = \frac{\text{Average Load [kW]}}{\text{Maximum Load [kW]}} \)